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The threshold model can be used to generate random networks of arbitrary size with given local properties

such as degree distribution, clustering, and degree correlation. We summarize properties of networks created

using the threshold model and present an alternative deterministic construction. These networks are threshold

graphs, and therefore contain a highly-compressible layered structure and allow computation of important net-

work properties in linear time. We show how to construct arbitrarily large, sparse, threshold networks with

(approximately) any prescribed degree distribution or Laplacian spectrum. Control of the spectrum allows care-

ful study of synchronization properties of threshold networks including the relationship between heterogeneous

degrees and resistance to synchrony.
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I. INTRODUCTION

Discovering and modeling the structure of biological, so-

cial, and technological networks has been the subject of in-

tense research in recent years. This activity has been fueled

by the increasing availability of large experimental datasets

and the discovery that real networks share common topologi-

cal properties that are quite different from classic random net-

works. The network structure, encoded in the links (edges)

between nodes, is important for many applications includ-

ing gene transcription-regulation and protein interaction [1],

strategies for the control of epidemics [2, 3], understanding

network robustness against failures or deliberate attack [4],

and discovering communities in social systems [5]. Many

real-world networks display an approximate power-law de-

gree distribution p(k)∼ k−γ , typically with 2 < γ < 3 [6], and

also tend to have high clustering with low diameter, a structure

labeled “the small world effect” [7]. The results on modeling

the structure of networks using these two descriptions and oth-

ers are reviewed in Refs. [8–11].

Global properties, such as the diameter and size of the

largest component, have dominated structural analysis of net-

works. With the increasing availability of a wide array of

more detailed experimental datasets and accompanying so-

phisticated network models, attention has now focused on dis-

tributions of local statistics such as degree (number of edges

at a node), clustering (number of triangles), and degree-degree

correlation (propensity for nodes of degree k to connect to

nodes of similar degree).

Most models for the creation of networks with a specific de-

gree distribution, clustering, or other statistical properties are

growth models where nodes and edges are added to create the

desired features in the limit of large number of nodes [6, 12].

These models are in contrast to “static models” such as the

classic Erdős-Rényi random graph [13], or the configuration

model [8] and generalization to networks with a given ex-

pected degree sequence [14], where a fixed number of nodes

N are specified and edges are connected between them ran-

domly. More recently, an interesting class of static models

has been developed that can generate networks with statisti-

cal properties similar to the growing network models [15–19].

These models assign a real variable, xi, to each node i which

is termed the “node weight”, “intrinsic fitness”, “hidden vari-

able” or “propensity to form edges”. In general form, such

hidden variable models assign node weights randomly from

a specified probability density function ρ(x) and then assign

edges between nodes i and j with another probability given by

a symmetric function f (xi,x j).

A preferential attachment method for building networks

with the addition of a node fitness parameter was presented

in Ref. [12]. A static model using node intrinsic fitness was

then used to study data packet transport through scale-free net-

works [15], and the size of connected components in a model

with a discrete set of node fitness values [18]. Further stud-

ies showed that scale-free networks could be constructed from

node fitness models even if the distributions of node weights

was not scale-free [16, 17].

In the general setting of random networks constructed from

hidden variables, one focus has been the derivation of statis-

tical properties of the network in terms of the distribution of

node fitness and the probability of connected nodes [19, 20].

Note that the static models can always be put into a network

growth framework if the node weights are assigned during a

growth process.

In this paper, we further analyze the threshold model stud-

ied in Refs. [16, 19, 21]. The threshold model creates random

networks through specification of a density function ρ(x) for

independently assigned weights on nodes xi, i = 1 . . .N, and a

threshold value θ . Once node weights xi have been assigned,

each possible edge (xi,x j) (i 6= j) is created if xi + x j > θ .

Here we show that the threshold model creates networks that

exactly meet the definition of a threshold graph in the graph

theory context [22, 23] and we call the resulting networks

“threshold networks.” These threshold networks display many

novel properties.

In Section II, we discuss the basic structure of threshold
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networks. We summarize predictions of distributions of net-

work structure measures for the threshold model in the limit

of large network size. We exploit their highly-compressible

layered structure to derive compact representations. We then

show how to construct arbitrarily large, sparse, threshold net-

works with (approximately) any prescribed degree distribu-

tion. In Section III, we describe the fast computation of

many relevant measures of network structure, including the

Laplacian spectrum and eigenvectors. This allows us to con-

struct arbitrarily large, sparse, threshold networks with (ap-

proximately) any prescribed Laplacian spectrum. We then use

these tools to provide new insights into dynamics on thresh-

old networks, in particular when dynamic coupling is of dif-

fusive type so that the Laplacian spectrum is relevant. Con-

trol of the spectrum allows careful study of diffusive dynam-

ics and synchronization properties, including the relationship

between heterogeneous degrees and resistance to synchrony.

Section IV provides a summary and conclusions.

II. THRESHOLD NETWORKS

In this Section we review some properties of threshold net-

works and some previous results from studies of the thresh-

old model. We present a compact description of threshold

networks and a deterministic algorithm for creating threshold

networks with a chosen degree distribution.

A. Properties of threshold networks

Threshold networks have been studied extensively in the

graph theoretic literature [24, 25] with reviews in Refs. [23,

26]. They belong to the chordal, co-chordal, comparabil-

ity, co-comparability, interval, split and permutation graph

classes [27, pg. 23]. In threshold networks, the neighbor-

hoods of nodes are nested (i.e. include the neighbors of every

lower degree node), and the graph can therefore be partitioned

into groups of identical nodes according to this nesting. We

use this partition to provide a compact notation, which we call

the creation sequence, for storing and manipulating these net-

works.

The structure of a threshold network is uniquely determined

(modulo relabeling of nodes with the same degree) by its de-

gree sequence [23, 28]. It is worth noting that threshold net-

works are not the only networks with this property. Also note

that the degree sequence restricts the number of nodes, while

the degree distribution would not.

Threshold networks include many common networks such

as the star (one hub connected to many points) and complete

graph. They also include networks with a wide range of prop-

erties. For example, the density, or fraction of possible edges

present, for a connected threshold network ranges over all

possible values from 2/N (stars) to 1 (complete graphs). As

we will show, for large N we can create a threshold network

with any approximate degree distribution. In addition, thresh-

old networks have the interesting property that the Laplacian

spectrum consists solely of integers [28]. The primary restric-

tion in terms of network properties seems to be the extremely

small diameter (when connected), which is at most two. In

addition, the threshold nature results in a nested neighbor-

hood structure. That is, the set of neighbors of each node is

a subset of the neighbors of every higher degree node. This

rigid structure may seem unrealistic as a model for real net-

works. But, they certainly occur as important subnetworks

containing hubs of real networks: the prototype hub, the star,

is a threshold network. Furthermore, networks that are sim-

ilar but not exactly threshold in nature may be approximated

in many situations by the threshold networks they mimic. For

example, models where the probability of attachment between

nodes depends in a smooth way on the sum or product of

node weights can produce networks very similar in structure

to threshold networks. Finally, network properties other than

diameter can be engineered quite flexibly and quickly. This

allows us to determine the impact of these network properties.

B. The threshold model

The threshold model generates a threshold network of N

nodes each with a weight chosen randomly from a distribution

ρ(x). Edges are then formed for any pair of nodes (i, j) for

which xi + x j > θ for some threshold value θ . The network

structure is completely determined by the choice of ρ(x) and

θ . Without loss of generality we can take θ = 1 although

sometimes it is easier to vary θ rather than scale the weights

x.

The degree correlations and clustering of the threshold

model in the large N limit were analyzed in Ref. [19]. Ma-

suda et al. [21] demonstrated that many forms of the density

function lead to power-law degree distributions with exponent

two. We review these results here briefly.

Let the cumulative distribution function for weights be

R(x) =
∫ x
−∞ ρ(x)dx. Then the expected degree for a node with

weight x is given by

E(k|x) = (N −1) [1−R(θ − x)] . (1)

Letting k̃ = k/(N − 1), we obtain an approximation for the

degree distribution P(k),

P(k̃) = ρ(x)
dx

dk̃
=

ρ(x)

ρ(θ − x)
=

ρ
(

θ −R−1
(

1− k̃
))

ρ
(

R−1
(

1− k̃
)) . (2)

This distribution is computed for a number of forms of the

density function. Two results are worth special attention.

First, power-law distributions arise for large k (on the or-

der of N) when density functions decay more rapidly than

power-law. Secondly, a power-law density with exponent

a + 1 yields a power-law degree distribution with exponent

(a+1)/a. Thus to obtain a power-law degree distribution with

specified exponent γ , one should arrange ρ(x) to be power-law

with exponent

a+1 =
γ

γ −1
.
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Unfortunately, finding the density function which produces

a given degree distribution involves solving the integral equa-

tion

P((N −1)(1−R(θ − x)))ρ(θ − x) = ρ(x) , (3)

with P(·) known and ρ(·) (and thus R(·)) unknown. This

equation is nonlinear for most interesting distributions. Thus,

while we know how to generate certain specific power-law

distributions, there is no formulation for general distributions.

The threshold model thus joins the collection of random

network generation methods that produce realizations which,

in the limit of large networks, approach a desired degree distri-

bution. One distinct advantage of this model is that it provides

analytical insight, fast algorithms, and concrete construction

without assuming any lattice or hierarchical symmetry.

C. Creation sequence

Threshold networks can be described very compactly by

what we call a “creation sequence” S: a binary string that pro-

vides a recipe for construction by reading the sequence from

the left and adding one node for each digit. There are two

types of nodes: dominating nodes, denoted by a 1, and iso-

lated nodes, denoted by a 0.

For any given binary sequence, construct a corresponding

threshold network as follows: reading the sequence from left

to right, for each digit in the creation sequence a new node

is added to the existing network with connectivity determined

by its type. A dominating node 1 is connected to all nodes

already in the network, and an isolated node is added without

connecting it to the existing network. At the end of this con-

struction, each dominating node will be connected to all the

nodes that preceded it (to the left) in the creation sequence,

and to all dominating nodes to its right in the creation se-

quence. Correspondingly, each isolated node 0 will be con-

nected only to the dominating nodes to its right. This nota-

tion is ambiguous for the left-most node, so by convention the

leading bit is assigned 1. It is clear from this construction that

the set of all 1 nodes form the maximal clique, that the set of

all 0 nodes are connected only to nodes in the maximal clique,

and that neighborhoods are nested from low degree to high de-

gree. For example, the creation sequence 10001 represents the

star S5, 11111 represents the complete graph K5, and 10101

and 10000101 represent the networks in Figure 1(c) and 1(d).

The creation sequence description of a threshold network is

equivalent to the weight formulation (specifying node weights

xi and a threshold θ ). That is, given node weights and a

threshold, we can obtain the unique creation sequence which

describes the corresponding threshold network. Conversely,

given a creation sequence we can find a set of node weights

and a threshold which produce the corresponding threshold

network. We proceed to a proof of the first statement, post-

poning the proof of the converse to later in this section.

An algorithm for obtaining the creation sequence from a

sorted list of node weights, x1 ≤ x2 ≤ . . . ≤ xN , with a thresh-

old value θ constructs the creation sequence from right to left

(a)
(b)

(c) (d)

FIG. 1: (Color online) Some threshold networks and correspond-

ing creation sequences. (a) Star with representation S = 10001. (b)

Complete graph K5 with representation S = 11111. (c) Network

with representation S = 10101. (d) Network with representation

S = 10000101. The creation sequence consists of dominating 1 nodes

and isolated 0 nodes and is read from left to right. In (a) one dominat-

ing node is connected to four isolated nodes, one of which, appearing

first in S, is technically both dominating and isolated and by conven-

tion denoted 1.

as follows. First consider the sum x1 + xN of the largest and

smallest weights in the list. If x1 + xN ≤ θ , then node 1 will

not connect to any of the remaining nodes on the list. That

means the node is an isolated node, so prepend a 0 to the cre-

ation sequence and discard the lowest weight from the list. If

x1 + xN > θ , node N will connect to all the remaining nodes.

Thus it is a dominating node, so prepend a 1 to the creation

sequence and discard the largest weight from the list. Repeat

this process with the new largest and smallest weights on the

list. When only one weight remains, this node connects to all

nodes with larger weight and no nodes with smaller weight.

It is both dominating (a member of the clique) and isolated

(only attaches to nodes in the clique). By convention for this

node we use a leading 1 to complete the creation sequence.

The connectivity imposed by the weights is precisely that of

the resulting creation sequence as describe above.

In the absence of additional structure, networks are gen-

erally incompressible, i.e. nearly all N-node graphs require

O(N2) bits in any lossless representation. The obvious binary

nature of the creation sequence provides storage for threshold

networks which requires at most N bits. We will show that

this compact storage also facilitates computation of many net-

work properties. The algorithms presented here work directly

with creation sequences, so there is no overhead for retrieval.

The transformation from node weights to creation sequence

involves sorting the weights and thus O(N lnN) time. Indeed

calculating network properties (such as the degree) also re-

quires sorting the node weights. So it is much more efficient in

storage and algorithmic speed to store network connectivity in

creation sequence form than via node weights. Our algorithms

assume the network is prescribed by a creation sequence.

Adjacent bits in S of the same type represent nodes iden-

tical in connectivity. If node labeling is not needed, an even

more compact representation C can be obtained by compress-

ing run-lengths of similar node types. This is done by count-

ing how many adjacent bits are the same starting from the
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left. The counts are then listed C = (D1, I1,D2, I2, . . . ,Dn, In)
where D j is the number of dominating nodes in the jth group

of 1’s and similarly I j is the number of isolated nodes in the

jth group of 0’s. Thus the creation sequence S = 11000110

has compact representation C = (2,3,2,1). Note that the first

number always represents dominating nodes. As examples,

C = (1,3,1), C = (5), C = (1,1,1,1,1) and C = (1,4,1,1,1)
denote the four networks in Fig. 1. For some network proper-

ties, the algorithms are actually faster when exploiting a com-

pact creation sequence, allowing the computation of network

properties of multi-million node dense or sparse threshold net-

works on a modern desktop computer.

The high compressibility of threshold networks derives

from two facts: (i) groups of adjacent nodes in the creation

sequence with the same type are identical (up to node relabel-

ing), and (ii) connectivity is fully determined by a sequence

of length < N. This observation motivates a visual framework

(based on the proof of Theorem 1.2.4 in Ref. [23]) that more

clearly exposes the underlying network structure.

We call the visual framework a layer-cake description of

the network and an example is shown in Fig. 2. The frame-

work, or cake, is made up of multiple layers, each filled with

two groups of identical nodes. The right side is filled with

dominating nodes while the left is filled with isolated nodes.

Moving from left to right in C, we place nodes from bottom

to top of the cake with layer j having I j nodes on the left side

and D j nodes on the right. The top left layer consists of degree

zero nodes (which are sometimes not considered as part of the

network) and the remainder is a connected network with each

dominating group forming a complete subnetwork connected

to all nodes below that layer. Nodes in each isolated group

connect only to nodes in the dominating groups from layers

above. The network shown in Fig. 2 has C = (2,4,3,6,5,1,1).
Note that the network visualization in Fig. 2 shows how much

clearer the structure becomes when depicted instead by the

layer-cake diagram.

We now prove the converse of the connectivity equivalence

between node weights and creation sequences stated above.

That is, we show that from a creation sequence we can con-

struct a set of node weights and a threshold so that the cor-

responding threshold networks are the same. Note that this

set of node weights is not unique for a given network. Start-

ing from a compact creation sequence C with n layers, assign

identical node weights to each node by group starting with

x = 1 for the In nodes in the upper left group of the layer-cake,

moving down the left side and then up the right increasing

the weight by one for each group. The upper right group has

Dn nodes each with node weight x = 2n (the total number of

groups). Setting the threshold to be θ = 2n + 1 then ensures

that the node weight threshold criteria for edges produces ex-

actly the connectivity of the layer-cake (and thus the creation

sequence).

D. Custom degree distributions

In addition to randomly created networks based on the

threshold model, we now show how to construct arbitrarily

I4 = 0

I3 = 1

I2 = 6

I1 = 4

D4 = 1

D3 = 5

D2 = 3

D1 = 2

FIG. 2: (Color online) Two representations of a threshold network

with the compact creation sequence C = (2,4,3,6,5,1,1). (top)

Layer-cake depiction of the network showing the structure of the net-

work by different node types. The layers are numbered from bottom

to top with the isolated nodes (small squares) on the left and the dom-

inating nodes (small circles) on the right. Ovals represent complete

subgraphs for the surrounded nodes while rectangles are groups of

isolated nodes that are not connected to each other. Lines between

the node group outlines mean that all nodes in each group are con-

nected to all nodes in the other group. (bottom) A two-dimensional

layout of the network.

large, sparse, threshold networks with (approximately) any

prescribed degree distribution or Laplacian spectrum. A gen-

eralization of this problem to vertex hidden variables models

with scale-free degree distributions was studied in Ref. [17].

Let pk be a discrete degree distribution that is normalized

so that ∑k pk = 1. The goal is to construct a threshold network

with approximately N nodes and with node degrees following

the degree distribution pk. The maximum degree kmax must

be less than N and the number of nodes with degree k should

be nk = ⌊N pk⌋. The construction strategy involves first cre-

ating a specific degree distribution realization {nk} from the

discrete distribution. The resulting degree sequence need not

be graphical since our algorithm adjusts the number of nodes

and edges slightly to be able to build a threshold network.

We build a threshold network with approximately this dis-

tribution by using isolated (0) nodes to fill out the degree dis-

tribution and dominating (1) nodes to keep the network con-

nected and distinguish between isolated nodes of differing de-

grees. With this construction, we create N isolated nodes and
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FIG. 3: (Color online) The degree distribution P(k) for a threshold

network that is approximately Gaussian. The threshold network was

generated as described in the text with the degree distribution given

by nk = ae−((k−c)/w)2

for k = 1, . . . ,20, a = 1000, c = 10 and w = 4.

kmax dominating nodes. While the number of nodes is thus

larger than N, for large sparse networks it is close to N. Sim-

ilarly, there will be a small number of nodes (the kmax domi-

nating nodes) of very high degree. These will generally affect

the connectivity of the network but they do not alter the degree

distribution very much for large networks.

As a simple example consider the degree distribution

[1,2,3,5] which we will assume is chosen from a given pk.

Starting at the highest degree k, we create nk isolated nodes

followed by a single dominating node. The highest degree in

the distribution is 4 of which there are 5 nodes so the sequence

starts with 100001 (the first node in the creation sequence is

always 1, but it will be treated as an isolated node for this

construction process). Descending in degree with the same al-

gorithm we find the creation sequence S = 100001000100101

or C = (1,4,1,3,1,2,1,1). The corresponding threshold net-

work has 15 nodes instead of 11 and the degree distribution

is [1,2,3,5,0,0,0,1,0,0,1,0,1,1] which has 4 nodes of de-

gree higher than 4 that don’t exactly match the original degree

distribution. While these few extra nodes certainly influence

the connectivity or topology of the network, they do not sig-

nificantly affect the degree distribution in the limit of large

networks.

More complicated threshold network examples can be gen-

erated by following the same construction procedure with

nk given by a prescribed distribution. The general com-

pact creation sequence alternates one dominating node with

nk isolated nodes from k = kmax to k = 1: C = (1,n(kmax) −
1,1,n(kmax−1),1,n(kmax−2),1, . . . ,1,n1,1). For example, if the

nk’s are produced by a Gaussian function the threshold

network has approximately Gaussian degree distribution as

shown in Fig. 3. If the nk’s are from a power-law function

then the threshold network has a power-law degree distribu-

tion (Fig. 4).

Networks created with this method have high clustering and

low assortativity (negative degree-degree correlations). Ev-

ery isolated node has a clustering coefficient equal to one so

the average clustering is more than N/(N + kmax). Since the

lowest degree nodes are connected only to the highest degree

nodes, and this pattern continues through the layer-cake, the

networks are disassortative. This method can also be used to

1 10 100
degree, k

10−3

10−2

10−1

1

P
(k

)

FIG. 4: (Color online) The degree distribution P(k) for a threshold

network that is approximately power-law. The threshold network was

generated as described in the text with the degree distribution given

by nk = ak−2.5 for k = 1, . . . ,20, and a = 2000.

construct networks with approximately any Laplacian spec-

trum using the connection between the spectrum and the de-

gree distribution described in Section III B.

We turn now from construction of threshold networks to de-

scription of computation of network properties including dy-

namics where coupling occurs over the threshold network.

III. STRUCTURE, SPECTRUM, AND

SYNCHRONIZATION

In this section, we describe algorithms for fast computa-

tion of many network properties, including both local struc-

ture measures such as clustering and degree and global struc-

ture measures such as betweenness centrality and the Lapla-

cian spectrum. We then examine implications for network

synchronization with diffusively coupled oscillators.

A. Fast computation

We now describe a series of algorithms for fast computation

of network properties. Most algorithms start with the creation

sequence so we note that the algorithm for obtaining the cre-

ation sequence from a sorted list of weights described in Sec-

tion II C is linear in the number of nodes. The degree of each

node is obtainable in linear time from the creation sequence.

In addition, the Laplacian spectrum, clustering, and between-

ness centrality can be similarly calculated in time linear in the

number of nodes.

Following are some algorithms for computing statistical

properties of threshold networks for a given creation se-

quence. For brevity, we introduce the notation

ND =∑D j, D+
ℓ = ∑

j>ℓ

D j, I−ℓ = ∑
j<ℓ

I j, N−
ℓ = ∑

j<ℓ

(D j +I j) .

a. Degree The degree of an isolated node at level ℓ is

simply k = D+
ℓ . The degree of a dominating node at level ℓ

is k = ND + I−ℓ − 1. As an example, the network in Fig. 1(d)

has C = (D1, I1,D2, I2,D3) = (1,4,1,1,1), so the (ordered as

in C) degree sequence is (2,2,2,2,2,6,1,7).
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b. Triangles The number of triangles for an isolated

node at level ℓ is D+
ℓ

(

D+
ℓ −1

)

/2. The number of triangles for

a dominating node at level ℓ is made up of (ND−1)(ND−2)/2

triangles in the clique and ∑ j<ℓ I j(D
+
j − 1) triangles formed

with isolated nodes. The example network in Fig. 1(d) has

triangle sequence (1,1,1,1,1,5,0,5).
c. Betweenness Centrality Betweenness centrality is the

number (or fraction) of shortest paths which pass through a

given node excluding paths for which the node is an endpoint.

If more than one path has the same length, the count is split

between them. The relevant shortest paths in a threshold net-

work are always length two, go through a dominating node,

and have an isolated node at one end. Thus, isolated nodes

have zero betweenness centrality. For dominating nodes, be-

tweenness is the same within each layer. The betweenness

Bℓ+1 for dominating nodes in layer ℓ + 1 is computed from

the forumla B1 = 0 and

Bℓ+1 = Bℓ +
Iℓ(Iℓ −1)

D+
ℓ

+
2Iℓ

(

N−
ℓ +Dℓ

)

D+
ℓ

. (4)

The first term appears because all paths through lower domi-

nating nodes have the same path length as paths through this

node. In fact, the only paths through this layer’s nodes that

are shorter than paths through lower dominating nodes have

one end in the previous layer’s isolated nodes Iℓ. The second

term represents all paths from nodes in Iℓ to other nodes in

Iℓ. The third term represents paths from nodes in Iℓ to each

node in other groups below layer ℓ+1. The second and third

terms are divided by D+
ℓ to account for shortest paths of the

same length that go through dominating nodes above level ℓ.

The example network in Fig. 1(d) has betweenness sequence

(0,0,0,0,0,10,0,22).

B. Laplacian spectrum

The Laplacian spectrum can be calculated easily from the

degree sequence and has some unique properties. If Ai j are

the elements of the adjacency matrix of a network then the

(combinatorial) Laplacian is defined as L = D−A where D

is the diagonal matrix of degrees (the sum of the rows of A).

The Laplacian of a network is useful for modeling diffusion

processes which move through edges. If a time-varying scalar

field u(i, t) is assigned to the nodes of the network and spreads

via diffusion, the equation governing this motion might be

ut = f (u)− Lu. Notice that the conventional sign for L is

opposite to that for the continuous Laplacian operator. The

Laplacian spectrum of a network is the matrix spectrum of L.

The Laplacian spectrum for a threshold network is entirely

made up of integers and it can be determined immediately

from the degree sequence via transposition of the Ferrer di-

agram [25, 29, 30]. The Ferrer diagram (Fig. 5) is a visual

depiction of the sorted degree sequence where the degree k of

each node is represented by a stack of k squares. The eigenval-

ues are found by transposing this diagram or simply counting

the number of squares in each of the N rows. Note that the top

row will always be empty (ki < N), hence zero is always an

1 2 3 4 5 6 7
node

6 4 2 2 2 1 1

degree = height

7

5

2

2

1

1

0
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v
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u
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=
w
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FIG. 5: (Color online) The Ferrer Diagram for the degree sequence

(6,4,2,2,2,1,1). Each column has a number of squares to match

the degree of a node. Because this degree sequence represents a

threshold network, the spectrum for the Laplacian can be obtained

by counting squares in each row to get (7,5,2,2,1,1,0).

eigenvalue. It corresponds to the constant eigenvector since

the sum of each row of L is zero. In fact there is an eigenvalue

λ = 0 for each connected component of the network and the

corresponding eigenvectors are constant on each component.

The eigenvectors are only slightly more difficult to obtain

than the eigenvalues. Threshold networks are constructed by

combining groups of nodes as shown in the layer-cake using

the two binary graph operations of union and join. Unions

of two networks take the union of the node and edge sets.

Joins of two networks take the union and then add edges from

each node of one network to each node of the other. Using

the layer-cake we can form an expression of unions and joins

which completely characterizes the network. First notice that

each dominating group is a complete subnetwork, while each

isolated group is a stable (self-isolated) subnetwork. Using

notation from the compact creation sequence, the network can

be constructed layer by layer starting at the bottom. At step j

join the current network with a complete graph on D j nodes.

Then union the network with I j isolated nodes. This formula-

tion of the network construction process allows us to build the

eigenvectors of the network because the effect of these opera-

tions on eigenvectors is understood [30].

Notice that each row of the Laplacian matrix is associated

with a node. The elements of the eigenvectors are similarly as-

sociated with a node. Assume that G is connected and denote

the constant eigenvector as x0 (note that it is associated with

the single zero eigenvalue). Let X(G) denote the remaining

N − 1 orthogonal eigenvectors. The following observations

were attributed in [30] to the Laplacian “folklore” and can be
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readily checked using matrix manipulation of the Laplacian

matrix.

1. When a network G is joined or unioned with another

network the eigenvectors can be extended to the new

larger network by assigning zero values at all nodes not

in G.

2. The spectrum of the union of two networks G1 and G2

with respective number of nodes N1 and N2 is the union

of the spectra of the individual networks. The eigen-

vectors consist of the vector x0, extensions of X(G1)
and X(G2), and an eigenvector xN1+N2−1 that identifies

the networks. This latter eigenvector, which we call the

identifier eigenvector, is chosen to have entries −N2 for

each node in G1 and N1 for each node in G2. Thus it is

orthogonal to the other eigenvectors (is constant on the

nodes of each of G1 and G2) and has associated eigen-

value λN1+N2−1 = 0.

3. The join of two networks G1 and G2 with number of

nodes N1 and N2 is only slightly more complicated. The

eigenvectors are the same as for a union. The associ-

ated eigenvalues are increased by the number of edges

added to each node in that network. That is, the eigen-

values associated with X(G1) increase by N2 and those

of X(G2) increase by N1. The identifier eigenvector

xN1+N2−1 has associated eigenvalue N1 +N2.

These results follow from the definitions of join, union, Lapla-

cian and eigenvector and can be checked via straight-forward

calculation.

We now describe the simultaneous construction of the spec-

trum and eigenvectors. Start with the complete graph KD1
.

Take as its eigenvectors x0 and D1 − 1 mutually orthogonal

vectors which are also orthogonal to x0. Standard (and sim-

ple) choices are shown in Fig. 6. Other orthogonal choices

can clearly be used as well. Note also that the subgraphs on

the left side of the layer-cake are initially isolated (Kc
I1

) with

the same eigenvector structure as KI1 , but zero eigenvalues.

Each union and join operation involves forming new eigen-

vectors as described in 3) and 4) above and either (unions)

retaining the eigenvalues, or (joins) adding to each eigenvalue

the number of nodes in the other network. As an example,

the Laplacian and eigenvector matrix for the network in Fig. 2

appears in Fig. 6.

The resulting spectrum is actually much simpler than the

construction process and can be computed quickly as follows.

Each isolated node contributes an eigenvalue equal to its de-

gree. The leading node in S contributes the zero eigenvalue.

All other dominating nodes contribute an eigenvalue one more

than their degree. Thus to compute the spectrum, we need

only compute the degrees.

The degree distribution is thus very similar to the Laplacian

spectrum for threshold networks. There is a shift up by one

for large values. The shift starts at the node with weight xi

just above half the threshold xi > θ/2. This near correspon-

dence between degree distribution and spectrum is convenient

for designing networks with a given spectrum (Sec. II D) and
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λ 22 1 21 6 15 9 11 0

deg 21 1 20 6 14 9 10 10

D/I D I D I D I D D

FIG. 6: The matrix of column eigenvectors of the Laplacian for the

network shown in Fig. 2. Blank entries indicate zero value. Boxes

have been placed around the entries describing groups of identical

nodes. Eigenvalues for each eigenvector appear at the bottom of each

column. Below them are the degree and node type for nodes in the

group identified by the eigenvector. Notice that dominating nodes

have degree one less than the corresponding eigenvalue while for

isolated nodes the spectrum and degree are equal.

seems to be generally true for networks which are close to, but

not quite, threshold in nature.

C. Synchronization

Synchronization of networks of oscillators has been stud-

ied in various contexts [31–36] with the basic framework de-

scribed in Ref. [32]. A common intuition is that networks

with small diameter or small average path length should be

easier to synchronize [31, 32, 35, 36]. Threshold networks

provide an excellent counterexample: we can easily construct

networks that are arbitrarily hard to synchronize and have a

diameter of two. Moreover, threshold networks show that re-

sistance to synchrony can vary greatly with fixed average path

length, and is not related to maximal betweenness centrality.

It is related to heterogeneity of degree through the range of

degree values though not the variance of degree.

Consider a system of N identical oscillators with state vec-

tor field u(t) where solutions with ui(t) = u j(t) for all nodes

i and j are defined as synchronized. The system is said to

be synchronizable if a synchronized solution is linearly stable

to nonuniform perturbations. A standard linear analysis near

the synchronized solution shows that for general oscillators

with diffusive coupling the stability of the synchronized state
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FIG. 7: (Color online) The phase difference of coupled oscilla-

tors vs time for a network with the dynamics given by u̇i = −ui +
σ ∑N

j=1 Li j(u
3
j −u5

j/2) and σ = 0.01855. The system is started from

an initially synchronized state with a small random perturbation ap-

plied to all nodes. The instantaneous phase is estimated using a

Hilbert transform of the time signals [39]. (a) A 100 node threshold

model with weights randomly selected from a power law distribution

with exponent γ = −2.5 and with threshold θ = 3. The eigenvalue

ratio is r = λN/λ2 = 100/33 ≈ 3.0. (b) The same network as (a) but

with three nodes added so that the creation sequence ends in 101.

This change makes the synchronized state unstable. The eigenvalue

ratio in (b) is r = λN/λ2 = 103/1 = 103.

is determined by the largest Lyapunov exponent Γ(λ ), also

called the master stability function [32, 37, 38]. If Γ(λi) < 0

for each i ≥ 2, the synchronized state is linearly stable. (The

eigenvalue λ1 = 0 corresponds to spatially uniform perturba-

tions.)

For many oscillatory systems the master equation is nega-

tive only in a single interval [α1,α2] determined by the type

of oscillator and strength of coupling. This implies that the

network is synchronizable only when the ratio r ≡ λN/λ2 <
α2/α1 [32]. Thus if λ2 and λN are inside this interval, i.e.

r < α2/α1, then network synchronization is stable. Construc-

tion of a synchronizable network is easier for small r. To make

a network resistant to synchronization, we design the connec-

tivity so that r, the resistance to synchrony, is large.

The explicit representation of the spectrum of threshold net-

works allows us to design networks with large r. Any thresh-

old network with N nodes and creation sequence ending in

101 has diameter two and r = N. Fig. 7 shows the effect of

adding 101 to the end of the creation sequence for a random

one hundred node network created with the threshold model.

This change increases the resistance to synchrony. In both

cases, the nodes are initially only slightly perturbed from the

synchronized state. That state is clearly unstable when the net-

work is made resistant to synchronization. This small change

in network structure is enough to push the system over the sta-

bility boundary for the synchronized state. Thus our construc-

tion produces a network that is arbitrarily hard to synchronize

despite a small diameter.

More generally, the resistance to synchrony r can be derived

for threshold networks explicitly. The largest eigenvalue λN

for a connected threshold network is the number of nodes N.

The eigenvalue λ2 is the minimal degree in the network. That

is, λ2 = Dn where n is the number of layers so that Dn is the

number of dominating nodes in the top layer. Combining, we

obtain r = N/Dn. Notice that this ratio does not depend on

most of the creation sequence.

We can design networks with prescribed resistance to syn-

chrony without limiting many other structure measures such

as average path length, maximal betweenness centrality, or

degree variance. For example, consider maximal betweenness

centrality and connected threshold networks with three node

groups (two layers) and C = (D1, I1,D2). The algorithm de-

scribed in Section III shows that maximal betweenness cen-

trality is attained by dominating nodes in the top layer and

is equal to Bmax = I1(2D1 + I1 − 1)/D2. Fixing the num-

ber of nodes N and the resistance r forces a fixed value for

D2 = N/r, but we are free to shift nodes between the first two

groups, changing I1 and D1 to customize Bmax. Thus r and

Bmax are independent for large networks. In practice, we can

attain any maximal betweenness centrality with prescribed re-

sistance to synchrony. Conversely, we can prescribe Bmax and

design large networks which attain any value of r.

Similar construction constraints allow r to be independent

of average path length and of heterogeneity of degree as mea-

sured by the variance. The variance of degree can be designed

using primarily the nodes in the lower layers of the layer-cake,

while r is determined by the top layer (and the total number

of nodes).

One measure of degree homogeneity which is directly re-

lated to resistance to synchrony for threshold networks is the

range of degrees. This is because kmax +1 = N and kmin = Dn

so that r = (kmax + 1)/kmin. This simple relationship shows

that once the interval of allowed degrees is established, r has

been determined. We have thus derived a direct relationship

between heterogeneity of degree as measured by range of de-

gree and resistance to synchrony for threshold networks. One

can increase resistance to synchrony by either increasing the

degree of the highest degree node, or by decreasing the de-

gree of the lowest degree node. A narrow range implies ease

of synchrony.

Other applications of spectral design using threshold net-

works include graph partitioning [40], and generic diffusively

coupled systems governed by reaction diffusion equations or

wave equations. Variations between states of low degree

nodes and their neighbors are associated with low eigenval-

ues and so are slowest to decay in diffusive systems and os-

cillate the slowest in wave settings. This agrees with our in-

tuition since the low degree nodes have least coupling with

other nodes. The fact that the eigenvalues are precisely the

degrees for the low degree nodes confirms this intuition. Less

intuitive, perhaps, is the result that eigenvalues are the same

for eigenvectors identifying a group and eigenvectors showing

variation within that group. Thus, variations within a group

decay at the same rate as variations between that group and

other neighboring nodes.
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IV. SUMMARY

The threshold model for network creation is one of many

models used to generate networks of arbitrary size with an ap-

proximate local properties such as degree distribution, cluster-

ing, degree correlation or spectrum. We summarize previous

work on networks created by the threshold model and present

an alternative deterministic model for threshold network cre-

ation which approximates a prescribed degree distribution or

spectrum. In either case, the created threshold networks are

graph theoretic threshold graphs, a fact that imposes a very

specific network structure. We use this structure to develop

a methodology for compact storage and fast computation of

many network properties. The degree distribution, cluster-

ing, betweenness centrality and Laplacian spectrum can all be

computed in linear time. In addition, the Laplacian spectrum

and eigenvector structure is completely characterized allow-

ing these networks to be created with customized spectrum.

Algorithms for the generation, storage and structural analy-

sis presented here are contained in the authors’ open-source

software package NetworkX [41].

Building on this base, we have described some implications

for the study of synchronization of diffusively coupled oscil-

lators. Diffusive spreading occurs most quickly through high

degree nodes, with spread around a clique being no faster than

spread to those outside the clique [42, 43]. Synchronization is

described in terms of the spectrum of the network. Threshold

networks provide constructive counterexamples to the notion

that networks with small diameter are easy to synchronize. We

also derived the result for threshold networks that resistance

to synchrony is completely determined by the minimum and

maximum degrees in the network.

The existence of fast algorithms for structural analysis sug-

gests that threshold networks are good candidates for network

deconstruction. That is, rather than analyzing an entire net-

work at once, we might consider the important threshold net-

works embedded in a bigger network and how they are con-

nected. Storing and manipulating this reduced network may

be more effective than working with the original network for

some tasks. The network motif literature (see e.g. [1]) decon-

structs large networks using subnetworks with small numbers

of nodes. By identifying small structures that occur more of-

ten than expected they attempt to identify structures with use-

ful features in the network. Using threshold networks as the

motif structures may have advantages over small subnetworks

because threshold networks are arbitrarily large and yet are

still computationally manageable.

Threshold networks are also good candidates for construct-

ing non-threshold networks with specified structure. The al-

gorithm might consist of creating many threshold networks

with desired properties and then connecting them in ways that

don’t significantly alter those properties. The ability to cre-

ate networks by connecting subnetworks with given structure

could provide great flexibility in network design.
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